Abstract

A spectral-domain white-light interferometric technique employing a low-resolution spectrometer at the output of a tandem configuration of the compensated (non-dispersive) Michelson interferometer and a two-mode highly birefringent optical fiber is used to measure intermodal dispersion characteristics of the optical fiber. The technique utilizes the fact that the spectral interference fringes are resolved in this configuration only in the vicinity of the so-called equalization wavelength at which the optical path difference (OPD) in the interferometer is the same as the intermodal group (OPD). The white-light spectral interferometric technique is used to measure the wavelength dependences of both the difference between propagation constants of <i>X</i>-polarized and <i>Y</i>-polarized LP modes and the intermodal group OPDs for an elliptical-core (highly birefringent) optical fiber. The measured intremodal dispersion characteristics of the optical fiber are compared with those corresponding to the results of an adequate theoretical analysis using the known parameters of the optical fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call