Abstract
A simple high-speed photodetector of high-power laser radiation, based on the optical rectification effect in the nanographit film, is described. It operates without an external power source. The spectral dependence of the optical rectification effect in nanostructured carbon (nanographite) films obtained by plasmachemical deposition was studied in a wavelength range from 266 to 5000 nm. The performance of this device was demonstrated by detecting pulsed laser radiation using the second, third, and fourth harmonics of radiation from an YAG:Nd<sup>3+</sup>-laser with passive Q-switching, radiation from light oscillators based on stimulated Raman scattering in compressed hydrogen and parametric oscillator pumped by the second harmonic of the YAG:Nd<sup>3+</sup>-laser. It was shown that the photodetector response time is shorter than 0.5 ns. It is suggested that nanographite films are promising materials for detectors of ultrashort laser pulses in the IR, visible, and UV spectral intervals and for generators of electromagnetic radiation operating in the terahertz frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.