Abstract
In this paper, a novel optical correlation system on the basis of wavelet packet theory and the mechanism of volume holographic associative storage is proposed for image recognition. Through the wavelet packet transform, a set of best eigen-images, which are regarded as the reference images for recognition in the associative correlation, are extracted from the training images, and then stored into a volume holographic crystal using the two-wave mixing volume holographic storage technique. When any image for identification is input into the crystal which means a correlator, angularly separated beams with different light intensities are obtained simultaneously. They represent the optical correlation results between the input and the set of eigen-images, and can be applied for the classification and recognition. This process takes the advantages of both the agility of wavelet packet transform and the high degree of parallelism of the photorefractive correlator. Theoretical analysis of this process is presented, and experimental results are given.© (2001) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.