Abstract

We present a new form of Kalman filter that allows the size of the state vector estimated by the filter to vary in an arbitrary way. The state vector is structured as a single global state vector and any number of local state vectors. The local state vectors are allowed to be coupled by the system plant equations to the global state vector, but not to each other. This means that the inverse covariance matrix contains mostly zeroes, and this allows the Kalman filter to be formulated such that the time complexity is a linear function of the number of local states, rather than cubic as would be the case with the normal Kalman filter. Local states may be added to or removed from the state vector at any time. The filter does not strictly allow state dynamics, but approximate methods are available under certain assumptions. We have implemented an active camera calibration algorithm for a high performance head/eye platform, Yorick, using the filter. This uses the trajectories of an arbitrary and changing number of tracked image features to update the calibration parameters over time. The algorithm is fully integrated into a parallel real-time vision system for gaze control.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.