Abstract

A new hybrid piezoelectric damping system with switching control are proposed here in order to reduce the control power requirement of piezoelectrical damping augmentation for flexible structures. There are two types of hybrid piezoelectric damping; one is a series type (integrated type, type I) where piezoelectric actuators are actively driven by the external voltage source with the passive tuned RL shunting circuit in series. The other is a separated type in collocated condition (type II) where the external voltage sources and the passive tuned RL shunting circuits are separated from each other, and both piezoelectric actuators to be used to the active and passive dampings are collocated on the host structure. The types I - II switching rule of the variable hybrid piezoelectric damping is determined by the vibration condition on the host structure. Availability of the proposed variable hybrid piezoelectric damping system is experimentally demonstrated by using a simple cantilever beam example with surface bonded piezo-elements. The experimental results indicate that the variable hybrid piezoelectric damping system is effective comparing the single type of hybrid piezoelectric damping system (type I or type II) from the viewpoint of active control power requirement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call