Abstract

In motion vision the problem is to find from a sequence of time varying images the relative rotational and translational velocities between a viewer and an environment as well as the shape of objects in the environment. This paper introduces a direct method called fixation for solving the general motion vision problem. This method results in a constraint equation between the translational and rotational velocities that in combination with the Brightness-Change Constraint Equation solves the general motion vision problem arbitrary motion relative to an arbitrary environment. Avoiding correspondence and optical flow has been the motivation behind the direct methods because both solving the correspondence problem and computing the optical flow reliably have proven to be rather difficult and computationally expensive. Recently direct motion vision methods which use the image brightness information such as temporal and spatial brightness gradients directly have used the Brightness-Change Constraint Equation for solving the motion vision problem in special cases such as Known Depth Pure Translation or Known Rotation Pure Rotation and Planar World. In contrast to those solutions the fixation method does not put such severe restrictions on the motion or the environment.© (1991) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.