Abstract

A new approach to underwater ultrasonic imaging is described and demonstrated which directly converts a 2D acoustic pressure image formed from an acoustic lens into an intensity-mapped visual image. There are no computers nor electronic requirements, nor piezo arrays necessary. The imager relies on the acoustic coupling, which occurs between directed acoustic energy and aligned nematic liquid crystals. The aligned liquid crystal, being optically birefringent, thereby serve as a display when viewed through crossed polarizers. Pressure waves established by acoustic transducers are reflected by the target, focused by an acoustic lens system, and converted into a visible image for target identification in littoral water. Anticipated uses are for searching and identifying underwater mines which are hazardous to military and civilian ships, ferries, and fishing boats. Other uses include search and rescue and inspection of underwater hazards and structures. Acoustic images obtained using only liquid crystal and light are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.