Abstract

Ultra-fast x-ray imaging is of great importance for diagnosing laser-driven inertial confinement fusion (ICF) plasmas. Typical required spatial and temporal resolutions are 10 micrometer and 10 ps, respectively. We have developed variety of one- (1D) and two-dimensional (2D) image sampling technique for ultrafast time-resolved x-ray imaging with x-ray streak cameras. Moire imaging of an x-ray-backlit target has been developed as 1D image sampling of an objective with 1D repetitive structure with a spatial resolution of 5 micrometer for use in experiments on hydrodynamic instabilities in laser- accelerated targets. With 1D sampling of repetitive 2D images, a multi-imaging x-ray streak camera (MIXS) with temporal- and spatial-resolutions of 10 ps and 15 micrometer, respectively, has been developed and successfully utilized for diagnosing uniformity and heating process of the imploded core plasmas. Two types of spectroscopic applications of the MIXS have been developed. One is multi-channel MIXS (McMIXS) which has three MIXS channels with various spectral responses for time- resolved 2D temperature measurement. Another is monochromatic MIXS (M-MIXS) for temperature, density and material mixing measurement, in which monochromatic images with Bragg crystals are coupled to MIXS. Finally, 2D image sampling of a 2D image on an x-ray streak camera (2D-SIXS) was also developed.© (2001) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.