Abstract

Cryptographic algorithms are constantly evolving to meet security needs, and modular arithmetic is an integral part of these algorithms, especially in the case of public-key cryptosystems. To achieve optimal system performance while maintaining physical security, it is desirable to implement cryptographic algorithms in hardware. However, many public- key cryptographic algorithms require the implementation of modular arithmetic, specifically modular multiplication, for operands of 1024 bits in length. Additionally, algorithm agility is required to support algorithm independent protocols, a feature of most modern security protocols. Reprogrammability, particularly in-system reprogrammability, is critical in enabling the switching between cryptographic algorithms required for algorithm independent protocols. Field Programmable Gate Arrays (FPGAs) are a viable option for achieving this goal. Ideally, the targeted FPGA will have been designed with the architectural requirements for wide-operand modular arithmetic in mind in an effort to maximize system performance. This contribution investigates existing FPGA architectures with respect to modular multiplication. It also proposes a new FPGA architecture optimized for the wide-operand additions required for modular multiplication.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.