Abstract

We have developed a 3D wavelet compression algorithm for medical images that achieves a good reconstruction quality at high compression ratios. The algorithm applies a 3D wavelet transformation to a volume image set, followed by a scalar quantization and entropy coding to the wavelet coefficients. We also implemented a parallel version of the 3D compression algorithm in a local area network environment. Multiple processors on different workstations on the network are utilized to speed up the compression or decompression process. The 3D wavelet transform has been applied to 3D MR volume images and the results are compared with the results obtained using a 2D wavelet compression. Compression ratios achieved with the 3D algorithm are 40 - 90% higher than that of using the 2D compression algorithm. The results of applying parallel computing to the 3D compression algorithm indicate that the efficiency of the parallel algorithm ranges from 80 - 90%.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.