Abstract

A hybrid detector system is being developed for measuring the cosmic ray elemental composition and energy spectra above approximately GeV/nucleon. This system employs both a conventional 'passive' emulsion chamber and an 'active' ionization calorimeter incorporating scintillating fibers. Emulsion chambers have a proton energy threshold approximately greater than 5 TeV for detectable dark spots in the x-ray films which are used as a visual 'trigger.' The central element of this hybrid system is a calorimeter which has 10 x-y hodoscopic layers of 0.5 mm scintillating fibers interspersed with 4 mm lead plates. The fibers sample the hadronic and electromagnetic showers (cascades) initiated by interactions in the overlying emulsion chamber. The cascades are recorded by two image-intensified charge-coupled device (CCD) cameras which view the ends of the fibers to present orthogonal views. These showers are located and traced with microscopes in the emulsion chamber to provide an energy calibration through standard emulsion chamber methods, and an independent confirmation of the primary particle's charge (which is also measured with a Cerenkov counter above the emulsion chamber). The hybrid system will be used this fall for a balloon-borne measurement of the cosmic ray proton and helium spectra from approximately 400 GeV/n to approximately 10 TeV/n. An 8-hour test flight was performed in September 1995. Details of the detector system and sample results from the test flight are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.