Abstract

Photodynamic therapy (PDT) inhibited and irreversibly abolished firing, caused necrosis of neurons, necrosis, apoptosis and proliferation of glial cells in the isolated crayfish stretch receptor. The role in these processes of the central components of Ca<sup>2+</sup>-mediated signaling pathway: phospholipase C, calmodulin, calmodulin-dependent kinase II, and protein kinase C was studied using their inhibitors: ET-18, fluphenazine, KN-93, or staurosporine, respectively. ET-18 reduced functional inactivation of neurons, necrosis and apoptosis of glial cells. Fluphenazine and KN-93 reduced PDT-induced necrosis of neurons and glial cells. Staurosporine enhanced PDT-induced glial apoptosis. PDTinduced gliosis was prevented by KN-93 and staurosporine. Therefore, phospholipase C participated in neuron inactivation and glial necrosis and apoptosis. Calmodulin and calmodulin-dependent kinase II were involved in PDT-induced necrosis of neurons and glial cells but not in glial apoptosis. Protein kinase C protected glia from apoptosis and participated in PDT-induced gliosis and loss of neuronal activity. These data may be used for modulation of PDT of brain tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.