Abstract

Borehole ground penetrating radar (GPR) was used to measure the temporal and spatial variability of soil water content under uniform wetting and drying conditions. Zero Offset Gather (ZOG) surveys were conducted before and during the uniform infiltration and the subsequent drainage experiments using the PuLseEKKO 100 borehole system with 200 MHz antennas in horizontal access tubes. Time domain reflectometry (TDR) data were collected from 10 vertical probes installed at 0. 1 m increments from 0.1 to 1.0 m below the ground surface. The TDR data were used as standard measures of soil water content to compare with the GPR estimated water content. The electromagnetic wave velocity along the survey profile at about 1 .0 m below the ground surface was estimated using ZOG data by picking the arrival time of the first event. Volumetric water content was calculated using a standard empirical relationship between velocity and water content for each ZOG location. Measured higher soil water content zones are potentially preferential flow areas and were observed in consistent locations throughout both the wetting and drying experiments. The radius of influence of the borehole GPR measurements was about 0.5 m determined theoretically and by comparing GPR and TDR data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call