Abstract

This paper explores the design of robot systems to take advantage of non-linear dynamic systems models, specifically symmetry breaking phenomena, to self-organize in response to task and environment demands. Recent research in the design of robotics systems has stressed modular, adaptable systems operating under decentralized and distributed control architectures. Cooperative and emergent behavioral structures can be built on these modules by exploiting various forms of communication and negotiation strategies. We focus on the design of individual modules and their cooperative interaction. We draw on nonlinear dynamic system models of human and animal behavior to motivate issues in the design of robot modules and systems. Sonar sensing systems comprising a ring of sonar sensors are used to illustrate the ideas within a networked robotics context, where distributed sensing modules located on multiple robots can interact cooperatively to scan an environment.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.