Abstract

A Monte Carlo model is used to examine the effect of water turbidity on the temporal storage of photons. Multiple scattering can store light in increasing scattering orders. It is hypothesized that this light will be present in a LIDAR gate when signal photons return from a distant target and will generally exceed the backscatter predicted by single scatter models. A photon's mean survival time in a turbid medium is the product of the medium's absorption coefficient at the photon's wavelength times the speed of light in the medium. For very clear ocean water this is about 190 nanoseconds. The model considers an unbounded body of water illuminated by light from a pulsed laser beam. An irradiance receiver collocated with the laser transmitter is the detector. Storage is studied as the absorption and scattering constituents of the water are incrementally varied in multiples of those found in clearest sea water. Single scatter albedos ranged from about 0.2 to 0.85 to span naturally occurring conditions. Results for this geometry show multiply scattered light surpassing singly scattered light returns for paths of the order of a volume attenuation length or less.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.