Abstract

In multifunctional material design, two or more functions performed by distinct system components or materials are incorporated into a single component or material system to improve system performance. The aim of this paper is to present a framework for the design of structure-battery (power) multifunctional composite materials for unmanned air vehicle (UAV) applications. The design methodology is based on optimization of composite material performance indices and the use of material design selection charts introduced by Ashby and coworkers in a series of papers for homogeneous and two-phase composite materials. Performance indices are derived for prismatic structure-battery composites under various loading conditions. The development of simple design tools in the form of spreadsheet templates is also discussed. Finally, results based on the above-mentioned framework and actual material properties will be presented for structure-battery circular and square struts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.