Abstract

The purpose is the electrodynamic analysis based on solving Maxwell's's equations completed by an equation of magnetization vector motion in a ferromagnetic for integrated strip-slot waveguiding structures containing magnetized ferrite films for spin-wave electronics devices design. The full-wave spectrum of electromagnetic and magnetostatic eigen modes is researched using accuracy mathematical modeling strip-slot structures with a different geometry on tangent magnetized ferrite substrates. The propagation constants frequency dependencies of dynamic modes and volume or surface magnetostatic modes in shielding micro strip, slot lines on ferrite substrates with transverse tangent biasing magnetic field were calculated using the decomposition approach by means of the multimode autonomous blocks method. Strip-down types of magnetostatic waves guided by strip or slot with the finite width are revealed. The classification of volume and surface magnetostatic mode depending on the geometry for strip-slot structures or the orientation of biasing magnetic field is done. Solutions of dispersion equations of MSW strip-down types using magnetostatic approximation for infinite ferrite layers are compared with the result of the numerical electrodynamic analysis. The theoretical method for determining of the strip-down magnetostatic mode at het 3D waves number space using MSW dispersion surfaces dissected by planes is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call