Abstract

Modeling of magnetostrictive Terfenol-D transducer performance requires reliable data on functional trends of the magnetostrictive element's material properties under various operating conditions. A statistical study was designed to experimentally evaluate material properties of 50 Terfenol-D samples under varied mechanical loads, varied ac drive levels, magnetic bias and mechanical prestress typical of transducer applications. This approach is based on a low-signal, linear- magnetomechanical model of the test transducer, and electroacoustics theory. Statistical analysis is provided for the material properties: Young's modulus at constant applied magnetic field, linear coupling coefficient (or axial strain coefficient), magnetomechanical coupling factor, and magnetic permeability at constant strain. Functional relations between material properties and ac drive levels and loads are developed, and corresponding confidence intervals are assessed. The trends show the sensitivity of Terfenol-D material properties to the operating variables and highlight the importance of properly understanding the effects of operating conditions on transducer performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.