Abstract
A thiol-terminated phenylazonaphthalene derivative, namely 1-mercapto-6-[1-(4-phenylazonaphthoxy)]hexane 1, was synthesized by diazo coupling of aniline with 1-naphthol, etherification with 1,6-dibromohexane and thiol derivatization, subsequently. By self-assembly technology, the compound was spontaneously absorbed in thin, optically transparent gold film and formed stable self-assembled monolayer (SAM). The self-assembly course was monitored by UV-visible absorption spectra which gave direct evidence for the self-assembly mechanism of self-assembled monolayer, i.e., chemically adsorbed firstly, then came through a long- time orientation. Meanwhile, cyclic voltammogram was employed to study the electrochemical reduction and oxidation of the immobilized phenylazonaphthalene. The single molecular area obtained using the two methods was almost the same: ca. 0.9 nm2. The irreversibility of the electrode process, sluggish reaction and reduction peak splitting all were originated from the well molecular orientation, not the dense packing in the SAM. This implied the process of oxidation and reduction accompanied the molecular conformation change which needed more free space for the movement of the molecular chain during the electrode processes.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.