Abstract

One major problem in magnetic resonance image equipment is the high-level noise borne by the vibration of the cylindrical shell to support coils for gradient magnetic fields. The vibration of the shell is excited by the Lorentz force between the pulse current applied to the coils and the main magnetic field. In order to suppress the noise inside the cylindrical shell, it is aimed to control the vibration of the shell. In this paper, simulation is carried out on the vibration control of the shell by using distributed piezoelectric actuators. The actuators produce bending moment or in-plane force when pulse voltages are applied synchronously with the pulse current of the coils. Coupling of actuators and vibration modes, and parameter optimization are also discussed. The simulation results show that the vibration level is successfully reduced in the frequency range of 400 approximately 1200 Hz.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.