Abstract

Small-signal gain time behavior for a pulsed e-beam sustained discharge CO laser amplifier operating on fundamental band vibrational transitions V → V-1 from 6 → 5 (λ ~ 5.0 μm) up to 32 → 31 (λ~7.5 μm) was studied both experimentally and theoretically at various parameters of active medium. Special attention was paid to the small-signal gain time behavior on high vibrational transitions (V > 15). As was previously shown by us, multi-quantum theoretical model of vibrational exchange has to be applied for a correct description of a CO laser operating on vibrational transitions V → V-1 with V higher than 15 instead of a single-quantum one. To make easier theoretical interpretation of the experimental results, the binary nitrogen free gas mixture CO:He = 1:4 was used in our experiments. Total gas density and initial gas temperature was 0.12 Amagat and ~100 K, respectively. The complete kinetic model of a CO laser taking into account multi-qauntum vibrational exchange was employed for theoretical description of the small-signal gain time behavior. The theoretical results were compared with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.