Abstract
Shadowgraphic holography offers significant advantages when characterizing the particulates from debris-producing events. Holography can provide the spatial resolution to span the particle size range over a large depth of field. Also, particulate velocities can be determined by generating a double-pulsed hologram. A technique that provided such holograms of the debris over a 180- degree field of view at ordnance velocities is extended here to hypervelocities. The higher debris velocities necessitate a shorter duration laser pulse. An analysis has been performed to determine the laser pulse requirements versus particle size and velocity, and the optical conjugates of the holographic component layout. The approach includes a rigorous diffraction theory analysis for the recording of the hologram to prove the equivalence of the smearing of the reconstructed image from a hologram of a moving object to that from an object with a spatial transmission gradient. It is shown that the recorded interference pattern, while degraded because of particle motion, remains stationary over the exposure duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.