Abstract

This paper presents results from a prototype scatterometer which show that distinctly different zeroth-order diffraction signatures are produced for wafers processed under different etch conditions. We present comparisons between the profiles estimated using the scatterometer signatures and those measured using atomic force microscopy, in-line scanning electron microscopy, and cross-sectional scanning electron microscopy. We found that all the metrology techniques investigated provided useful information about the profile characteristics, but only the atomic force microscope and the scatterometer are suitable as in-line measurements of critical dimension profiles -- and only scatterometry provides estimates of the underlying film structure. In this study, the wafers consisted of patterned photoresist over blanket layers of a deep-ultravoilet anti-reflection coating, polysilicon, and silicon dioxide. These wafers were intentionally varied at the lithography step and intentionally misprocessed at the gate etch step to produce a wide range of process variation. Scatterometry measurements were made on multiple dies per wafer and estimates of feature profile information such as film thickness and critical dimension were generated by comparing the experimental signature to a library of theoretical solutions. We found that the scatterometer was capable of showing signal differences for different wafer processing conditions, and can be used as an in-line measurement of profile characteristics suitable for closed- loop process control of lithographic and etch processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.