Abstract

In a dense medium, the particles do not scatter independently. The effects of correlated scattering become important, and the spatial correlations of particles have to be included [1-5]. These have been verified in controlled laboratory experiments [3,4]. Propagation and scattering in dense media have been studied with the quasicrystalline approximation [2], and the quasicrystalline approximation with coherent potential for the first moment of the field [1] and the correlated ladder approximation for the second moment of the field [6]. The dense medium radiative transfer theory has also been developed from these approximations to study multiple scattering effects in dense media [6-8]. We have recently extended the results to medium to high frequencies and included the effects of Mie scattering from correlated scatterers of multiple sizes [9]. As a function of frequency, scattering first increases rapidly in the Rayleigh regime, then starts to level off at the Mie scattering regime. Comparisons have been made with experimental data of snow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.