Abstract

This paper presents results on optical cross-connect switches based on novel MEMS vertical mirrors. The switch consists of two mirror arrays to redirect optical beams from an input fiber array to an output fiber array. Each mirror is actuated by two electrostatic comb drive actuators, and can be rotated bi-directionally and perpendicularly to the chip surface. Finite element model (FEM) and Gaussian beam optics have been used to simulate and optimize the optical cross-connect switch architecture. Results have shown that the switch is much less constrained by the scaling distance of light propagation as the port count grows. However, the coupling efficiency is sensitive to angular alignment for large port-counts; thus mechanism for ensuring precise angular control of the micro-mirror is crucial for the proposed MEMS optical cross-connect switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.