Abstract

Real-time rule-based decision systems are embedded AI systems and must make critical decisions within stringent timing constraints. In the case where the response time of the rule- based system is not acceptable, it has to be optimized to meet both timing and integrity constraints. This paper describes a novel approach to reduce the response time of rule-based expert systems. Our optimization method is twofold: the first phase constructs the reduced cycle-free finite state transition system corresponding to the input rule-based system, and the second phase further refines the constructed transition system using the simulated annealing approach. The method makes use of rule-base system decomposition, concurrency, and state- equivalency. The new and optimized system is synthesized from the derived transition system. Compared with the original system, the synthesized system has fewer number of rule firings to reach the fixed point, is inherently stable, and has no redundant rules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call