Abstract

This paper describes the modifications in the dynamic behavior of a building structure when devices with variable stiffness and damping are installed in parallel with a low- damping isolation system. The results of eigen-value analyses of linear-elastic structural models with varying degrees of isolation stiffness and damping direct the subsequent design of a semi-active deice. A hydraulic semi- active actuator is designed to minimize an H2 norm of the closed loop system. Details regarding the energy storage mechanisms of the device are retained in the device model. The energy dissipation mechanisms are idealized to be viscous in nature. The actuator behaves essentially as a visco-elastic Maxwell element with a variable damping coefficient. The response time of the control-valve mechanism in this actuator is studied to reveal the relative benefits of a valve that is fast to open and valve that is fast to close. Device parameters that result in a variable damping and variable damping and variable stiffness properties are given. A model-independent, bang-bang, control rule is employed to illustrate the closed loop control system when variable damping and variable stiffness embodiments are deployed. Rules governing the placement of device with this control rule are given when the device is primarily dissipative.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call