Abstract

The presentation gives an overview of the ongoing Army Research Laboratory (ARL)/University of Maryland research effort on vertical-cavity-surface-emitting-laser (VCSEL) interconnects and OE processing and why this technology is of interest. ARL is conducting a research and development effort to develop VCSELs, VCSEL arrays, and their hybridization with complimentary metal-oxide-semiconductor (CMOS) electronics and microwave monolithic integrated circuits (MMICs). ARL is also very active in the design, modeling, and development of diffractive optical elements (DOEs). VCSEL-CMOS flip-chip optoelectronic circuits and DOEs are of interest together with detector-CMOS flip-chip circuits to provide digital and analog optoelectronic interconnects in optoelectronic processing architectures. Such optoelectronic architectures show promise of relieving some of the information flow bottlenecks that are emerging in conventional digital electronic processing as the electronic state of the art advances at a rapid pace and the electronic interconnects become a significant limitation. Such optoelectronic interconnects are also of interest in the development of analog optoelectronic processing architectures that are very difficult to implement in conventional electronic circuitry due to the incorporation of dense arrays of interconnects between electronic elements. VCSEL-MMIC- detector flip-chip circuits are of interest for the incorporation of optoelectronic interconnects into analog RF systems where the optoelectronic interconnect offers advantages of size, weight, bandwidth, and power consumption. VCSEL-MMIC interconnects may also play a role in future high- speed digital optoelectronic processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call