Abstract

Emergence of stable gaits in locomotion robots is studied in this paper. A classifier system, implementing an instance- based reinforcement learning scheme, is used for sensory- motor control of an eight-legged mobile robot. Important feature of the classifier system is its ability to work with the continuous sensor space. The robot does not have a prior knowledge of the environment, its own internal model, and the goal coordinates. It is only assumed that the robot can acquire stable gaits by learning how to reach a light source. During the learning process the control system, is self-organized by reinforcement signals. Reaching the light source defines a global reward. Forward motion gets a local reward, while stepping back and falling down get a local punishment. Feasibility of the proposed self-organized system is tested under simulation and experiment. The control actions are specified at the leg level. It is shown that, as learning progresses, the number of the action rules in the classifier systems is stabilized to a certain level, corresponding to the acquired gait patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.