Abstract

Template regularization embeds the problem of class separability. In the machine vision perspective, this problem is critical when a textural classification procedure is applied to non-stationary pattern mosaic images. These applications often present low accuracy performance due to disturbance of the classifiers produced by exogenous or endogenous signal regularity perturbations. Natural scene imaging, where the images present certain degree of homogeneity in terms of texture element size or shape (primitives) shows a variety of behaviors, especially varying the preferential spatial directionality. The space-time image pattern characterization is only solved if classification procedures are designed considering the most robust tools within a parallel and hardware perspective. The results to be compared in this paper are obtained using a framework based on multi-resolution, frame and hypothesis approach. Two strategies for the bank of Gabor filters applications are considered: adaptive strategy using the KL transform and fix configuration strategy. The regularization under discussion is accomplished in the pyramid building system instance. The filterings are steering Gaussians controlled by free parameters which are adjusted in accordance with a feedback process driven by hints obtained from sequence of frames interaction functionals pos-processed in the training process and including classification of training set samples as examples. Besides these adjustments there is continuous input data sensitive adaptiveness. The experimental result assessments are focused on two basic issues: Bhattacharyya distance as pattern characterization feature and the combination of KL transform as feature selection and adaptive criterion with the regularization of the pattern Bhattacharyya distance functional (BDF) behavior, using the BDF state separability and symmetry as the main indicators of an optimum framework parameter configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.