Abstract
In this paper, we propose a method of recognition of lung nodules using 3D nodule and blood vessel models considering uncertainty of recognition. Region of interest (ROI) areas are extracted by our quoit filter which is a kind of Mathematical Morphology filter. We represent nodules as sphere models, blood vessels as cylinder models and the branches of the blood vessels as the connections of the cylinder models, respectively. All of the possible models for nodules and blood vessels are generated which can occur in the ROI areas. The probabilities of the hypotheses of the ROI areas coming from the sphere models are calculated and the probabilities for the cylinder models are also calculated. The most possible sphere models and cylinder models which maximize the probabilities are searched considering uncertainty of recognition. If the maximum probability for the nodule model is higher, the shadow candidate is determined to be abnormal. By applying this new method to actual CT images (37 patient images), good results have been acquired.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.