Abstract

Planar Resonant Cavity LEDs (RCLEDs) are suitable light sources for parallel interchip interconnect links, due to their high efficiency, zero-threshold, low voltage, high reliability and high speed characteristics. The through-substrate emitting RCLEDs, optimised for Polymer Optical Fibre (POF) coupling, consist of an InGaAs quantum sandwiched between a metal mirror and a distributed Bragg reflector. The RCLEDs are arranged in 8x8 arrays with 250 um pitch. The arrays have been mounted onto glass carriers, and the coupling efficiency into POF, the far-field pattern and the modulation characteristics are measured. The overall quantum efficiency of the devices with 50 um diameter was found to be 13.4%, the QE into POF was 3.7%. The large-signal transient behaviour of the devices has been investigated. Using a high-speed pulse source, nanosecond rise and fall times have been measured. Wide open eye diagrams at 1 Gbit/s were obtained using voltage pulse drivers. These data were compared to theoretical results based on a non-linear rate equations model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.