Abstract

The rapid growth of communication continuously demands an increasing number of data transport channels. We present an approach towards a substantial growth of channel numbers within the integrated optical waveguide chip. This is accomplished by introducing a vertical integration scheme, which is implemented with stacked polymer waveguides. To meet the requirements of stacked optical waveguide devices concerning index distributions, cross-sections and alignment precision, a novel fabrication technology has been developed. During the stacking process several fundamental problems, e.g., index inhomogenities caused by diffusion effects and distortion of the desired waveguide structures with increasing stack height, have to be avoided. In addition, the non-linear index change of the polymer materials during polymerization has to be carefully considered to come to well defined index distributions, which are the same in all layers. A solution meeting these requirements is presented using standard processes like UV patterning in combination with thermal curing steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.