Abstract
The usage of laser treatments for production of semiconductor elements becomes necessary in order of it is great advantages. The traditional methods for preparation of photosensitive layers from A<SUP>2</SUP>B<SUP>6</SUP> compounds are vacuum evaporation, cathode or magnetron sputtering with additional thermal treatment and usage same techniques for contact areas formation of In, Ga, Al, Cd, CdO. The creation of Om- power points for solar elements, using CdS an n-layer, continues to be a problem because of the necessity of transparency and linear characteristics. In this paper is offered a method for preparation of solar cells deposited by vacuum evaporated on cital substrate with additional laser treatment by CW CO<SUB>2</SUB> laser and in situ formation of Om- power points from CdO over a layer of CdS using UV TEA N<SUB>2</SUB> laser. The electronic and compositional properties of solar cells were analyzed by XRD, XPS, and SEM. Using vacuum evaporation of CdS on cital substrate and laser treatments of layers in powder of CdS, CdCl<SUB>2</SUB> and CuCl, the photosensitivity of CdS layers has been improved by 8 orders of magnitude, which makes them suitable for solar cells and photoresistors with planar Om contact areas from CdO with very high transparency - about 80% while it is about 1% for the metal power points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.