Abstract
Finding principal curves in an image is an important low level processing in computer vision and pattern recognition. Principal curves are those curves in an image that represent boundaries or contours of objects of interest. In general, a principal curve should be smooth with certain length constraint and allow either smooth or sharp turning. In this paper, we present a method that can efficiently detect principal curves in complicated map images. For a given feature image, obtained from edge detection of an intensity image or thinning operation of a pictorial map image, the feature image is first converted to a graph representation. In graph image domain, the operation of principal curve detection is performed to identify useful image features. The shortest path and directional deviation schemes are used in our algorithm os principal verve detection, which is proven to be very efficient working with real graph images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.