Abstract

Many of the Smart materials being investigated (e.g., Shape Memory Alloys (SMAs), piezoceramics, and magnetostrictives) exhibit significant hysteresis effects, especially when driven with large control signals. In this paper the similarity between the microscopic domain kinematics that generate static hysteresis effects, or ferromagnetics, piezoceramics and SMAs is noted. The Preisach independent domain hysteresis model, and its derivatives, have been shown to be a comprehensive class of hysteresis operator that captures the major features of ferromagnetic hysteresis, and hence it is proposed here as a suitable model for piezoceramic and SMA hysteresis also. This basic Preisach model is used to model piezoceramic sheet actuators bonded to a flexible aluminum beam, and a Nitinol SMA wire muscle that applies a bending force to the end of the beam. A numerical inverse Preisach hysteresis series compensator is also proposed and applied in a real time experiment thereby reducing the apparent nonlinear hysteresis effects for the piezoceramic actuator quasi-static case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.