Abstract

Astronomical speckle holographic methods are shown to calibrate the image blurring effects of the large fraction of the energy in the side-lobes of the point spread function of a dilute aperture imaging system. This self calibration method works for imagery which contains a local point-like reference within the partially isoplanatic field of view. The reference may be a physical object within the (partially isoplanatic) field of view or it may be reconstructed by iterative deconvolution. Data reductions with an iterative deconvolution algorithm show even more striking performance than speckle holography. Atmospheric modeling was used to simulate multiple observations of the same target object with a 5 m dilute aperture pupil with different point spread functions. The iterative deconvolution algorithm recovers Fourier interpolated results for the equivalent 25 m filled aperture without requiring independent observations of a point-like reference source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.