Abstract

Integrating Passive Millimeter Wave camera (PMMW), Global Positioning System (GPS), and Differential Global Positioning System (DGPS) provides a pilot with a visual precision approach and landing in inclement weather conditions conceivably down to CAT III conditions. A DARPA funded, NASA Langley managed Technology Reinvestment Program (TRP) consortium consisting of Honeywell, TRW, Boeing, and Composite Optics Corporations is demonstrating the PMMW camera. The TRW developed PMMW camera displays the runway through fog, smoke, and clouds in day or night conditions. The Global Air Traffic Program Office entered into a Cooperative Research and Development Agreement (CRDA) with Honeywell to demonstrate DGPS. The Honeywell developed DGPS provides precision navigational data to within 1 m error where GPS has 100 m of error. In inclement weather the runway approach is initiated using GPS data until a range where DGPS data can be received. The runway is presented to the pilot using the PMMW image viewed via a Heads Up Display (HUD) or Head Mounted Display (HMD). At a range where DGPS data is available, a precise runway and horizon symbology is computed in the Flight Display Computer and overlaid on the PMMW image. Image processing algorithms operate on the PMMW image to identify and highlight obstacles on the runway. The integrated system provides the pilot with an enhanced situation awareness of the runway approach in inclement weather. When a DGPS ground station is not available at the landing area, image processing algorithms (again operating on the PMMW image) generate the runway and horizon symbology. GPS provides the algorithm with initial conditions for runway location and perspective. The algorithm then locates and highlights the runway and any obstacles on the runway. Honeywell Technology Center is performing research in the area of integrating the PMMW, DGPS, and GPS technologies to provide the pilot with the most necessary features of each system; namely: visibility, accuracy, obstacle detection, runway overlay, horizon symbology and availability.© (1998) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.