Abstract

Avalanche Photodiode (APD) arrays are being applied to Laser-Induced Breakdown Spectroscopy (LIBS) for elemental analysis with standoff detection capability. This instrument, which represents a valuable addition to planetary rover missions as well as Earth-based applications, benefits from the advantages common to both Geiger-mode and proportional APDs, which are solid-state detectors with virtually single-photon sensitivity, higher quantum efficiency than photomultiplier tubes or intensified CCDs, and rapid sub-nanosecond response speed. We have demonstrated LIBS detectability better than 770 parts-per-billion of sodium utilizing the photon-counting Geiger-mode APD. In a LIBS system, an APD array offers the unparalleled prospect of selecting in each channel the most appropriate temporal window for detecting the target species. In real-time detection systems, such as microfluidics-based fluorescence detection of bacterial spores, these compact, robust APD arrays promise portable hand-held instruments that utilize tight optical coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call