Abstract

Photoinduced modifications of NAD(P)H attributed autofluorescence of CHO cells in a single- beam gradient force optical trap (optical tweezers) were studied. Fluorescence spectra of single cells in the optical trap were measured using a modified microscope with an IR microbeam at 1064 and 760 nm for trapping, UVA radiation at 365 nm for fluorescence excitation, and an optical multichannel analyzer for spectral recording. No strong effect of the 1064 nm trapping beam on fluorescence intensity and spectral characteristics was found, even for power densities up to 70 MW/cm2. In contrast, 760 nm microirradiation resulted in a significant fluorescence increase, probably indicating cell damage due to absorption by heme- containing molecules. UVA exposure (1 W/cm2) of the trapped cells generated within seconds an initial fluorescence decrease, followed by a significant increase up to 5X of the value prior to irradiation. The UVA-induced modifications reflect NAD(P)H auto-oxidation and irreversible cell damage due to oxidative stress.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.