Abstract

A possibility of temporal analysis of picosecond light pulses in the IR region with the help of photocathodes based on semiconductor superlattices (SL) of type I (InP/InGaAs) with Schottky barrier is discussed. A new principle of avalanche photoelectron emission from such an SL at interband absorption of light is suggested. The principle is based on the electrons free length path increasing in a SL with narrow quantum wells under high electric field applied to the SL. The idea makes it possible to develop a new device - avalanche photocathode with internal amplification for the IR region of 0.9-2 micrometers and temporal resolution better than 30 ps. It is proposed to use doped as well as undoped SL as basis for photocathodes sensitive to the IR radiation in the range of up to 10 micrometers . The photoemission from such structures is caused by the intersubband absorption of light in quantum wells. The use of undoped SL greatly reduced the thermoemission current of the photocathode but requires additional excitation of the SL by light pulses with energy approximately corresponding to the band gap of the narrow band gap material of the SL. The temporal resolution of such photocathodes is supposed to be less than 30 ps. The conditions for the avalanche photoelectron emission obtaining are determined, and the SL parameters which meet the requirement of maximum quantum efficiency of the photocathode are calculated.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.