Abstract

Phase holograms in holographic emulsions are usually obtained by two bath processes (developing and bleaching). In this work we present a one step method to reach phase holograms with silver-halide emulsions. Which is based on the variation of the conditions of the typical developing processes of amplitude holograms. For this, we have used the well-known chemical developer, AAC, which is composed by ascorbic acid as a developing agent and sodium carbonate anhydrous as accelerator. Agfa 8E75 HD and BB-640 plates were used to obtain these phase gratings, whose colors are between yellow and brown. In function of the parameters of this developing method the resulting diffraction efficiency and optical density of the diffraction gratings were studied. One of these parameters studied is the influence of the grain size. In the case of Agfa plates diffraction efficiency around 18% with density < 1 has been reached, whilst with the BB-640 emulsion, whose grain is smaller than that of the Agfa, diffraction efficiency near 30% has been obtained. The resulting gratings were analyzed through X-ray spectroscopy showing the differences of the structure of the developed silver when amplitude and transmission gratings are obtained. The angular response of both (transmission and amplitude) gratings were studied, where minimal transmission is showed at the Braggs angle in phase holograms, whilst a maximal value is obtained in amplitude gratings.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.