Abstract

This paper describes the current design characteristics and performance capabilities of the US Army Missile Command's diode laser based infrared scene projector technology. The projector is now operational at the US Army Missile Command's Research, Development, and Engineering Center and is being integrated into several HWIL simulation facilities. The projector is based upon a linear array of Pb-salt diode lasers coupled with a high-speed optical scanning system, drive electronics and synchronization electronics. The projector design has been upgraded to generate 256 X 256 resolution scenes at 4 KHz frame rates, and the fabrication of a 544 X 544 projector is in progress. The projector system now includes real-time non-uniformity correction electronics and is interfaced with a real-time scene generation computer. In addition, a closed-cycle cryogenic cooling system has been added for increased dynamic range and maintenance-free operation. The system's modularity provides upgradability to meet specific performance requirements such as increased spatial resolution, different emission wavelengths, or dual-band scene projections. The projector's upgraded design and performance characteristics are presented in this paper, as well as sample images generated with the projector and captured by an InSb FPA sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call