Abstract

A series of porous carbon materials, produced by pyrolysis of saccharose and anthracene and heat treated at 1000&deg;C, 1800&deg;C and 2600&deg;C has been studied by wide-angle neutron scattering. The neutron data were collected at Rutheford Appleton Laboratory (RAL). The data were recorded in the scattering vector range from 0 to 60 &angst;<sup>-1</sup> which enabled them to be converted to a real-space representation via the Fourier transform. The structure of these carbons has been described in terms of a model based on disordered, graphite-like layers with very weak interlayer correlations. At higher temperatures the anthracene-based carbon transforms into graphite while the carbon produced from saccharose remains disordered. The graphitization process has been studied in detail by careful analysis of the diffraction data in real and reciprocal space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.