Abstract

We present a study on a high-speed optoelectronic system for implementing space variant transforms (SVT) in image and signal processing using a Hough Transform (HT) as an example. The HT has been found to be highly useful in applications requiring detection of lines, ellipses and hyperbolic shapes, such as radar detection and data fusion, topographical map analysis, etc. However, the implementation of a SVT such as HT, is computation and memory intensive, e.g. HT of an image of dimension N X N requires greater than N<SUP>3</SUP> operations. All-electronic systems remain inadequate when real time SVT processing of large data sets is required. In this paper we show that an optoelectronic (OE) system employing parallel processing can perform such SVT requiring on the order of only N steps. We show that our proposed OE system can HT an input image of dimension N equals 1024 in 2.1 ms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call