Abstract

Among diffusion methods, photothermal radiometry (PTR) has the ability to penetrate and yield information about an opaque medium well beyond the range of conventional optical imaging. Owing to this ability, pulsed-laser PTR has been extensively used in turbid media such as biological tissue to study the sub-surface deposition of laser radiation, a task which may be difficult or impossible for conventional optical methods due to excessive scattering and absorption. In this work, the optical and thermal properties of tissue- like materials are observed using frequency-domain IR photothermal radiometry. An approximate 3D heat conduction formulation with the use of 1D optical diffusion is developed to derive a turbid frequency-domain PTR model. The agreement in the absorption and transparent scattering coefficients of model phantoms is investigated. The present opto-thermal model for frequency-domain PTR may prove useful for non-contact, non-invasive, in situ measurement of optical properties of tissues and other multiply-scattering media.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.