Abstract

Quantities characterizing high temperature thermodynamic equilibria such as vapor pressures, enthalpies of formation and thermodynamic activity coefficients have traditionally been determined by classical techniques such as the Knudsen effusion method. Such classical techniques usually suffer from poor accuracy and from interference from other vapor species present with the vapor being measured. By comparing the classical methods with the rather infrequently used optical technique based on opacity measurements, we can demonstrate that this latter technique is largely unaffected by interfering vapor species and that it also possesses a spectroscopic multiplexing advantage that considerably enhances its accuracy over classical techniques. The attainment of these two advantages is illustrated with examples of atomic uranium opacity determinations in the pure uranium system and in the uranium nitride system. In both cases, all the opacities were obtained in the presence of interfering uranium oxide vapor and it was still possible to derive the desired thermodynamic data with excellent accuracy.© (1983) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.