Abstract

Clear and transparent MgO doped LiTaO3 single crystals have been grown by the Czochralski method from a congruent melt. Their optical damage resistance has been characterized by measurement of the change of photoinduced birefringence. We compare the optical damage resistance of LiTaO3 and LiNbO3, each containing almost the same amount of Fe impurities (less than 1 ppm), and show that LiTaO3 has about 4 times lower optical damage resistance, which is not consistent with the data previously reported in the literature. On the other hand, MgO doped yielded an improvement in the optical damage resistance, as reported for MgO doped LiNbO3 crystals. The other important features of MgO doping are that: improved transparency spectra especially in a visible wavelength region, resulting in a change of color to clear and transparent from brown-yellow, and a shift in the absorption edge to shorter wavelengths of 270 nm. These are important advantages when considering shorter wavelength accessibility and high conversion efficiency in second harmonic generation devices.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.