Abstract

We present a new microscopy system based on the OCT principle, that uses a multiplexed lock-in detection scheme to generate a 2D head-on image in parallel without lateral scanning. Our 'full-field optical coherence microscopy' comprises a Michelson interferometer built with a polarizing beam splitter, and uses a photoelastic birefringence modulator to modulate the optical path difference between the two orthogonal polarizations. A novel signal processing method is used to achieve a demodulation in parallel on every pixel of a 256 X 256 CCD camera. A 840 nm electroluminescent diode with 20 micrometers coherence length is used to illuminate the field of view through the microscope objective lens. In-depth exploration of the sample is realized by changing the plane of focus. The lateral resolution of the images is limited by the camera pixel size and is 2 micrometers . The axial sectioning ability is approximately 8 micrometers . Having validated our setup on model samples, we now evaluate its performance on biological structures. As an example, images of onion cells from 50-400 micrometers below the surface are obtained in 1 s with 100 dB sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call