Abstract

The `toner jumping method' is proposed to more simply conduct the non-impact printing process in electrophotography. To clarify the fundamental functions of this method, in this paper, the jumping behavior of toner is studied by simulating with the aid of a personal computer. To control the locus and distribution of toner from a magnet roller electrode to the paper on the back electrode, the mesh electrode is assumed to be inserted at the middle of the roller and back electrode. Between the magnet roller electrode and the back electrode the higher dc voltage is applied compared with the mesh electrode against the roller electrode. The locus and distribution of toner reaching the paper are simulated changing the applied voltage in each raw's and column's direction of mesh electrode. It is assumed to be possible to control the jumping behavior of toner from magnet roller to paper. As a result, the role of the mesh electrode in the `toner jumping method' on the quality of image in the non-impact printing process is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.